

ALOS-2 satellite

ALOS-2 in-orbit configuration

Specification

L-band SAR (PALSAR-2)	Stripmap: 3 to 10m res., 50 to 70km swath ScanSAR: 100m res., 350km/490km swath Spotlight: 1×3m res., 25km swath		
Life time	5 years (target: 7 years)		
Agility	Earth pointing attitude to observation < 2minutes Change observation direction (right/left) < 3minutes		
Downlink	X-band: 800Mbps(16QAM) 400/200Mbps(QPSK) Ka-band: 278Mbps (Data Relay)		
Orbit	Sun-synchronous orbit Altitude: 628km Local sun time : 12:00 +/- 15min Revisit: 14days Orbit control: ≤+/-500m Orbit determination: ≤1m		

Today's contents

- Key Elements for Autonomous Orbit Control
- 2. Key Elements for **Precise Orbit Determination**
- 3. System Test Status

1. Key Elements for **Autonomous Orbit Control**

Precise orbit maintenance

- Both in-plane and out-of-plane maneuvers are performed autonomously
 - To improve the coherency of the repeat-pass SAR interferometry observation

Conceptual image

Recurrent error < +/- 500m (95%)

(incl. high latitude area)

with respect to reference orbit

Autonomous control algorithm

- Reference trajectory of orbit is generated on the ground in advance
 - Consider detailed orbit perturbation model to avoid unnecessary orbital maneuvers
- "maneuver slot" concept is applied
 - Avoid unexpected conflicts between mission observations and maneuver executions
- The onboard flight computer selects the most proper "maneuver slot", and calculates the amount of delta-V just before the execution.
 - To extend the interval between maneuvers
 - To avoid a deceleration maneuver

Real-time GPS L1 navigation

- For autonomous orbit control, real-time onboard navigation using L1 signal is important.
- Algorithm of enhancing navigation accuracy is developed
 - Estimate both ionospheric delay and its change
- Measurement accuracy < 10 m (95%)

Numerical simulation of orbit maintenance

- Maintained inside 500m tube > 99.7%
- During the active solar period, the minimum interval between maneuvers is 1.5days.
 - The autonomous orbit control method is indispensable

2. Key Elements for **Precise Orbit Determination**

Off-line precise positioning

- Precise orbit determination is expected from ALOS-2 data users.
- Dual GPS (L1 and L2) receiver is equipped onboard.
- However, ALOS-2 SAR frequency is overlapped with L2 signal.

Interference between GPS and SAR AM

- Strong RF signal will be input into GPS Antenna from SAR antenna.
- Nominal operation plan: GPS L2 input is switched off during SAR observation.

Orbit Determination (analysis)

- Requirement of orbit determination: 1m (95%)
- Analysis result
 - During SAR observation (L2 loss): 0.5m 0.8m
 - GPS L2 signal is used all time: better than 0.2m

Enhanced low-noise amplifier for GPS receiver with endurance against SAR signal was developed

Orbit data distribution

- Distribution delay of Precision orbit data is improved, and Rapid data is added.
 - Precision data: Max 50 hrs delay (ALOS: Max 81 hrs delay)
 - Rapid data: Max 12 hrs delay (ALOS: not provided)

	ALOS	ALOS-2	
Type	Precision Data	Precision Data	Rapid Data (added)
Distribution time	09:00 (UT)	20:00 (UT)	① 05:00 (UT) ② 11:00 (UT) ③ 17:00 (UT) ④ 23:00 (UT)
Data period	N-3day 0:00 to N -2 day 0:00 (UT)	N-2 day 17:00 (UT) to N-1 day 18:00 (UT) *divided into four data	12 hours – 5 hours before Ex) ① N-1 day 17:00 (UT) to N day 00:00 (UT) *overlapped 1 hour

Precision data distribution

Rapid data distribution

3. System Test Status

System verification sequence

Initial electrical and functional test

(Jan. 2012 – Sep. 2012)

Purpose

- Electrical connection; System -Components
 - Electrical function of all sub-system
- Total function and performance as system

The requirements of total function and performance of system was confirmed to be satisfied

* After the PFT of PALSAR-2 subsystem, the PFM of Electric Unit (ELU) was installed inside the satellite system, and then its electrical function was also verified.

Thermal vacuum test

• (Oct. 2012 – Nov. 2012)

Purpose

- Verify the thermal design of satellite system
- Function and performance of thermal control device
- Electrical function and performance under vacuum

PALSAR-2 antenna, DRC antenna and Solar array paddle had been tested independently.

Vibration and Shock test

• (Sep. 2013 – Nov. 2013)

Purpose

- Verify the structure design of satellite system
- Function and performance of pyro-technic devices and deployment mechanisms
- Electrical function and performance after the vib

All equipment including PALSAR-2 antenna is installed as the flight configuration.

Mission data handling system

Mission data handling system

Agile attitude pointing using high torque wheels

- One Reaction Wheel (RW) is aligned roll axis, and other four RWs are mutually skewed.
- RW was developed by the JAXA, more than 0.9Nm output torque and 40 Nms momentum (at 3200rpm)

Conclusion

- ALOS-2 will succeed ALOS's mission with enhanced capabilities.
- To achieve higher coherence of interferometry,
 - Autonomous accurate orbit maneuvering (within 500-m orbital tube)
 - Precise orbit determination (including enhanced GPS receivers with endurance against L-band SAR signal)
- For a quick response to disasters and for a flexible observation planning
 - Agile right- and left-looking function by satellite body rolling
 - Large-size data record and a high-speed data downlink system have been installed.
- ALOS-2 System test is on-going. It will be launched by the H-IIA Launch Vehicle.